Vi introduceras till Pythagoras sats redan i grundskolan. Detta geometriska samband följer oss sedan genom både fysik-och mattekurser därefter, så det råder ingen tvekan om att satsen är användbar. Pythagoras själv, däremot, råder det en hel del tvivel om. Hans lärjungar, pythagoréerna, kom att tillföra mycket till vetenskapen, men när en av medlemmarna i detta brödraskap upptäckte något som gick emot deras världsbild kom det att kosta honom dyrt.
De biografiska uppgifter vi har om Pythagoras är osäkra. Den huvudsakliga källan vi har är boken “Om Pythagoras liv”, skriven av Iamblichus, en syrisk författare som levde omkring 600 till 700 år efter Pythagoras. Det sägs, iallafall, att Pythagoras föddes omkring år 569 f.Kr. på ön Samos och dog cirka 495 f.Kr. Han studerade kosmografi, alltså fysik och matematik. År 510 f.Kr blev han osams med tyrannen Polykrates på Samos och flydde därför till Kroton i Magna Graecia, Storgrekland, som normalt omfattade södra Italien. Här bildade Pythagoras en skola och fick ett antal lärjungar. Med sina lärjungar talade han om etik, själens odödlighet och om transmigration (själens vandring mellan olika existenser). Pythagoras lärjungar delades upp i två grupper. Den ena gruppen kallades för akousmatikoi, vilket på grekiska betyder “lyssnare”, och fick bara ta del av det som Pythagoras lärde ut. Den andra gruppen kallades för mathematikoi, “matematiker” på grekiska, vilket på den tiden syftade på vetenskapsmän i allmänhet. Till denna grupp hörde de som efter hand nådde en hög kunskapsnivå och det är denna grupp som man brukar kalla för pythagoréerna.

Pythagoréerna bildade ett hemligt brödraskap som använde pentagrammet som symbol. Det var en sluten grupp med stränga etiska och religiösa krav på sina medlemmar. De utförde reningsriter och följde moraliska och avhållsamma regler. Även genom att följa vissa matregler skulle det bli möjligt för deras själar att nå högre rang i deras nästa liv, vilket skulle resultera i att de befriades från “födelsehjulet”. På grund av sin tro såg pythagoréerna könen som likvärdiga. De ansåg dessutom att man skulle behandla slavar mänskligt samt respektera djur. Filosofi ansågs vara den högsta formen av rening och enligt traditionen var det faktiskt Pythagoras som först använde termen. Pythagoréerna bidrog med mycket kunskap till medicin, matematik och astronomi. De var exempelvis bland de första att lära ut att Jorden var en sfärisk planet som kretsar kring en bestämd punkt.
Läran om det grekiska talbegreppet arithmos utvecklades av pythagoréerna. Aritmetiken bör inte blandas ihop med det som grekerna kallade för logistik. Logistik var köpmännens matematik, medan endast de teoretiska matematikerna intresserade sig för aritmetiken.
Det pythagoreiska samfundets åskådning baserades på tesen att “allt är tal”. Pythagoréerna var övertygade om att allt kunde uttryckas med hjälp av heltal. Med tal menar man en mångfald av enheter. Detta betyder att grekerna, på en teoretisk nivå, bara begrep och accepterade de naturliga talen (1,2,3…), försedda med en enhet. Grekerna kunde göra jämförelser mellan tal och bestämma proportioner mellan dem. Med proportioner menas inte bråk som till exempel 9/12, utan relationen mellan 9 och 12. Det var inte förrän i slutet av antiken som bråk blev en del av den teoretiska matematiken.
Enligt Pythagoras är talen universums formella och materiella princip: det var talen som bestämde universums struktur och som byggde upp universum. Visionen om talens universella kraft skulle dock visa sig vara ohållbar.

Tänk dig en kvadrat vars ena sida är uppdelad i 5 lika stora delar. Dessa delar används som måttenhet. En diagonal dras sedan genom kvadraten. Vi ska nu försöka mäta diagonalen med denna måttenhet. Det visar sig att 7 sådana mått kan placeras utefter diagonalen, men en liten del av diagonalen blir kvar. Man kan försöka göra detta med ännu mindre mått, genom att exempelvis dela upp sidan i 12 lika delar istället för 5. Efter att ha testat detta ett antal gånger visar det sig till slut att det är meningslöst. Det går helt enkelt inte att mäta diagonalen med samma mått som mäter sidan. Att två sträckor generellt sett inte kan mätas med samma mått innebär att de är så kallade inkommensurabla. Denna upptäckt var enormt viktig för pythagoréerna, då den rubbade deras världsbild.
Efter att inkommensurabiliteten upptäckts stod det klart för pythagoréerna att om två sträckor inte är kommensurabla, så måste de vara obegränsat delbara. Något odelbart element kan alltså inte existera.
Enligt traditionen var det en medlem av pythagoréerna som hette Hippasos som gjorde den här upptäckten. Hippasos anses också vara den som först beskrev det gyllene snittet. Han skrev upp kvoterna mellan sidorna i ett pentagram och lyckades då visa att dessa kvoter inte kunde beskrivas med hjälp av heltal. En av de kvoter Hippasos hittade kallas för det gyllene snittet. Den som bidrog mest till att det gyllene snittet blev så mytomspunnet var dock den grekiske filosofen Platon. Eftersom Hippasos offentliggjorde sin upptäckt bröt han mot det pythagoreiska samfundets regler, och det sägs att Pythagoras dömde honom till döden genom dränkning.